年轻人逃离的工厂,正在被博士们看中
2018年初冬,在跟老同学吃过一顿饭后,陈仁做了一个决定——放弃腾讯自动驾驶核心技术负责人的职位和优厚的待遇,选择做一名扎在钢铁厂的“工人”。从外人看来,这个决定太不能理解了。
无独有偶。一年之后,也是冬天,林巧正也辞掉了阿里的工作,加入专注于矿山无人驾驶解决方案的初创公司易控智驾,成为上述矿场上为数不多拥有博士学历的“工人”。
这并不是他们的一时冲动。两年后的今天,在回首当初的选择时,他们仍坚定地认为,工业才是未来科技最好的应用场景之一。
两位国内头部大厂“资深程序员”的选择,在一定程度上,可看作是当下科技人才流向的微妙变化。
BOSS直聘研究院数据显示,自2018年Q3起,尽管互联网仍然是人工智能人才需求的主导行业,但传统行业AI人才发展指数也大幅增长。到今年春招,传统产业界的应届博士生招聘需求同比增幅达到75.7%。但另一个现实的问题是,随着老龄化加速,招工难愈演愈烈,工厂越来越难留住年轻的打工人,其生产方式也与当下的前沿科技无缘。
于是在这些传统工厂里,一种工人的两极化流动正在悄然发生:一方面,疫情加剧了工厂的生产压力,年轻人正加速逃离传统工厂;而另一方面,一些名校硕博毕业、拥有多年互联网行业技术沉淀的科技人才则把目光投向工厂、矿山,试图用科技改变老旧的行业。
怀揣技术的博士与身怀经验的一线工人,正在发生一场化学反应。
这场化学反应很可能会影响新一代年轻人的职业选择,也注定影响着中国工业的前途命运。
1、博士涌进工厂
即使在大牛云集的互联网领域,陈仁的履历也算得上耀眼。
2009年,毕业于华中科技大学的陈仁开始进入图像识别领域,后又转向深度学习,并在滑铁卢大学攻读博士学位;2013年陈仁加入百度,是百度IDL(深度学习研究院)早期核心成员;2016年加盟腾讯,参与组建自动驾驶技术团队,并成为腾讯自动驾驶核心技术负责人。
用同学的话说,他“永远踩在人类技术最快的车道上”。
如果他的人生按照这样的轨迹走下去,陈仁的未来应该是在大厂实现持续的职业升迁和收入的倍增,成为别人眼中的“成功人士”。
但2018年底,他却下定决心离开舒适圈,与冶金工业自动化领域的资深专家陈洪成立了工业智能制造解决方案提供商瓦特曼智能(WATTMAN),做了一名常驻钢铁厂、铝厂的“钢铁侠”——据说他每个月30天中,有20天以上是在这些工厂里,至今依然保持这样的频率。而此前,他很少到客户的现场出差。
瓦特曼智能CEO谭胜虎向「甲子光年」讲述了他们创业过程中的一段经历和思考:他曾拜访过一家冶金企业集团,年营收动辄两三千亿元,营收规模占当地省份GDP的1/4——这在基础工业领域相对普遍,但在互联网领域,这样的体量只有阿里、腾讯这种巨头企业才能达到。
然而这些基础重工业企业内部却是另一番景象——生产工艺传统、生产环境依旧充满危险,年轻工人越来越少。
普通人经常在新闻中看到的镜头——钢铁厂内钢包(高温熔炉,盛钢水的钢制容器)在输送和倾倒铁水,实际上这是需要三个人协同操作完成的:一个工人在悬梁上驾驶天车,一个工人在地面观察,另一个工人则在地面根据观察员的反馈指挥天车驾驶员。
即使这样谨慎,仍然会有发生危险的可能性,毕竟铁水的温度高达1600℃,一旦泄露或倾洒,所到之处便满目疮痍。
钢厂并非没有考虑运用控制系统和机械装置来完成这一操作,但现实是,在高温、腐蚀性的环境中,用机器吊运超过十吨重的钢包还面临着不少难题,传统自动化方式没有很好的解决方案,而最前沿的人工智能技术又与工业尤其是重工业的车间隔着长长的距离。
在调研过数十家工厂后,从北京大学微电子系研究生毕业的谭胜虎对技术与应用间的鸿沟有过非常大的触动,这也是他和陈仁做出职业转向的重要原因——缩短人工智能技术与重工业的距离。
林巧的经历,与陈仁十分相似。
林巧是浙江大学光电学院的博士,2017年以后在阿里巴巴菜鸟网络ET实验室担任无人物流车硬件负责人。在大厂领导一个技术团队,这本是程序员最好的发展之路了。但随着工作越深入,林巧越感觉到自己正陷入一个怪圈——明明很有前景的技术,却在落地时陷入难产。
在慎重思考后,他意识到这个怪圈形成的原因——一是场景刚性需求痛点不够,但更重要的是方法的问题。
如果找不到一个合适的场景,技术推广起来会十分吃力;如果又没有一个好的方法,那做落地时则难上加难。
针对自动驾驶的落地场景,林巧心中已慢慢有了答案——业内已经形成共识,矿区、港区、园区以及机场这“四区”是自动驾驶技术落地最近的几个场景。而落地的方法,则需要自己到现场去寻找。
他的职业选择转机出现在2019年夏天,趁着休假,林巧来到鄂尔多斯的露天矿上“体验生活”。尽管只待了一天,但巨大的矿车、陡峭的矿坑以及漫天飞扬的黄沙,都给他留下了深刻的印象。“从未体验过这么大的矿车,仅轮胎直径就1.4米,几乎跟成年人的肩膀一样高。而且,到驾驶室是需要手脚并用爬上去的。”林巧回忆称。
如果这些体验算是满足了一个人的猎奇心,那另外一个体验就让大多数人受不了——矿区上沙尘极大,而且当时所在矿区的道路边上是深约七八十米的边坡。“坐在那么大的车里,感觉就跟在悬崖边走路一样。”至今回想起来,林巧仍旧心有余悸。
但林巧也有很多收获:矿区的作业环境是无人驾驶落地的绝佳场景,路上没有行人、车辆管理有序。最重要的,这不是个伪需求——矿上的司机平均年龄接近50岁,他们马上就干不动了,此外他们还流动频繁,极不稳定。
8个月后,林巧离开阿里办公室的舒适沙发,加入矿区无人驾驶初创公司易控智驾担任技术副总裁,过上了跟陈仁一样的“艰苦”生活——50%的时间都在矿区出差。
实际上,“盯”上工厂、矿区的不单是程序员个体。就在林巧有了进工厂想法的前后,阿里另一个神秘的部门也把目光悄悄对准了工厂。同期阿里犀牛智造的工程师们也在“上山下乡”——在犀牛智造,所有的算法工程师都需要先到生产线上去做一段班组长,有一位南洋理工大学的算法博士,到工厂之后也从班组长干起,跟工人们同吃同住两个月。
华为在跟传统钢铁厂合作时,也会把刚招进来的博士专家派到工厂里,与工人一起熟悉整个生产流程。
从数据上看,博士涌进工厂正成为一个确定的趋势。BOSS直聘研究院的数据显示,今年春招,产业界的应届博士生招聘需求同比增幅达到75.7%。其中,“博士大战”竞争最为激烈的三大细分领域是数字技术、医疗健康和智能制造。相似地,对于硕士毕业生的需求同样集中于数字技术、教育、医疗健康和制造业领域。
“博士大战”的背后,是传统工业在数字化转型中,越来越重视基础研究和前沿技术的应用。
2、中年程序员,跳出大厂的束缚
在腾讯自动驾驶部门,孙银健向陈仁汇报。在得知自己的领导选择去工业领域创业后,2019年,孙银健也从腾讯辞职,加入瓦特曼智能。
从履历上看,他也是个实力派——985名校毕业,本科、研究生均在自动驾驶领域学习、进行技术研究,毕业后进入上汽集团,后又进入腾讯无人驾驶部门。但随着工作越久,他心中的困惑越来越大,“从事的技术看上去高大上,但是越做越发现它离真正的落地有很大的距离。”
本文系作者授权本站发表,未经许可,不得转载。